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ABSTRACT 

The ideal strength of a material is the stress at which the lattice itself becomes unstable and, 

hence, sets a firm upper bound on the mechanical strength the material can have. The present 

paper includes an ab-initio calculation of the ideal shear strength of Fe. It is, to our knowledge, 

the first such computation for any ferromagnetic material. The paper also elaborates on our 

earlier calculation of the ideal tensile strength of Fe by studying the effects of strains which 

break the tetragonal symmetry. The strengths were calculated using the Projector Augmented 

Wave Method within the framework of density functional theory and the generalized gradient 

approximation. In <001> tension the ideal strength is determined by an elastic instability of the 

ferromagnetic phase along the "Bain" strain path from bcc to fcc. An <001> tensile strain also 

leads to instability with respect to transformation into a face centered orthorhombic structure, 

and to various magnetic instabilities. However, these are encountered at larger strains and, thus, 

do not affect the ideal strength. We also investigated the ideal shear strength of bcc iron in two 

prominent shear systems, <111>{112} and <111>{110}. In both shear systems the ideal strength 

is determined by the body centered tetragonal structure that defines a nearby saddle point on the 

energy surface. The ideal shear strengths are thus very similar, though they are not identical 

since the two shears follow slightly different strain paths from bcc to bct. We investigated the 

magnetic instabilities encountered during <111>{112} shear. These instabilities do not appear 

until the strain is significantly greater than the instability strain of the ferromagnetic crystal. 

Hence while Fe exhibits some novel effects due to magnetism, they do not affect the ideal 

strength, which is determined by the same elastic instabilities that determine the strengths of 

most other bcc metals. 
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I. INTRODUCTION 

 

The ideal mechanical strength of a material is the stress required to force deformation or fracture 

by the elastic instability of its crystal lattice. The ideal strength has been the source of scientific 

inquiry for over 80 years [1]. The simple models for the ideal strength developed by Frenkel [2] 

and Orowon [3] have proven to be convenient means of understanding this topic. However, 

recent advances in the capabilities of computing machines have made it possible to study the 

ideal strength quantitatively and in greater detail using ab-initio electronic structure calculations 

[4-9]. 

 

While crystalline materials are normally deformed or broken by defects that become active at 

stresses well below the ideal strength, the ideal strength is interesting and important for several 

reasons. First, the ideal strength is one of the few mechanical properties of materials that can be 

computed from first principles. It is an inherent property of the crystal lattice and, thus, offers 

insight into the connection between the intrinsic bonding and symmetry of the crystal and the 

mechanical properties it shows. In fact, many of the familiar aspects of the mechanical behavior 

of crystalline solids, such as the {100} cleavage of bcc crystals, the cleavage resistance of fcc 

materials, and the common slip systems of fcc and bcc are inherent features of behavior at the 

limit of strength [10]. Second, the ideal strength is an inherent upper bound on the strength. The 

ideal strength is useful to know since it sets clear limits on the attainable mechanical properties. 

For example, the ideal strength suggests a practical upper bound on the yield strength of ductile 

steel, and suggests why Ni additions may promote ductile fracture in high strength steel [11]. 

Third, as is becoming increasingly evident, the ideal strength is actually approached in a number 

of practical situations, such as the nano-indentation of materials with low defect densities [12]. 

 

While the ideal strength is defined by elastic instability, its precise definition is somewhat subtle. 

Of course, the ideal strength depends on the geometry of the load; the strength in tension 

depends on the direction of the tension, the strength in shear on the plane and direction of shear, 

the strength under multiaxial loading on the geometry of the multiaxial load. But the load that 



induces instability in an actual test may also depend on the response of the loading mechanism 

[13,14]. In this case the measured value of the limiting strength is not necessarily a material 

property. Nonetheless, there is a well-defined inherent value of the ideal strength for any load 

geometry [15]. It can be found from Gibbs' condition of internal stability: it is necessary (though 

not sufficient) for mechanical stability that the material be stable with respect to internal 

rearrangements that leave its boundaries fixed [15]. This condition is satisfied for a strained solid 

when every possible incremental strain increases the free energy. The tensor that governs the 

change in free energy on incremental strain from a strained state is the "Wallace tensor" [16], and 

the condition of stability is that all eigenvalues of the Wallace tensor be positive. A test sample 

in a loading device may fail at a load below the ideal strength defined by the first vanishing 

eigenvalue of the Wallace tensor, but it must fail when this strength is reached. 

 

The elements of the Wallace tensor incorporate the elastic constants of the crystal in its current 

state of strain. While it is possible to compute the elastic constants for every step along a 

hypothetical strain path in an ab-initio study of elastic stability, it is tedious to do so. And it is 

usually unnecessary. We are ordinarily interested in the ideal strength for some simple example 

of the applied stress, such as uniaxial tension or simple shear. In these cases the ideal strength is 

ordinarily the maximum stress along the "relaxed" loading path in which all stresses orthogonal 

to the applied stress are zero. The possible exceptions involve instabilities that are orthogonal to 

the loading direction, such as a hypothetical shear instability that terminates deformation in 

uniaxial tension. It follows that the ideal stress can, ordinarily, be found directly by straining the 

material with the load of interest up to the maximum stress, while periodically applying low 

symmetry distortions to test for orthogonal instabilities. This procedure is well suited for ab-

initio calculations. 

 

Ab-initio computations of the ideal strengths of bcc metals (W, Mo, Nb, Fe) have been published 

by several investigators, for example [9,17-19]. The results show that symmetry plays a 

dominant role in determining the ideal strength. The energy of the crystal is a function of the six 

independent components of the strain and is, hence, a 6-dimensional hypersurface in a 7-

dimensional space. The local minima and the saddle points on this hypersurface almost always 

correspond to structures with high symmetry. The configurations of greatest interest are the 



saddle points in the energy surface that surround the initial state. The ideal strength is determined 

by the steepest slope encountered along the path from the initial state to the first saddle point. 

Thus each elastic instability is associated with a saddle point structure. Four possible saddle 

point structures have been identified in previous studies of the the ideal strengths of bcc metals: 

the fcc structure, the simple cubic (sc) structure, a body centered tetragonal (bct), and a base 

centered orthorhombic structure [17,19,20]. For example, relaxed shear of a bcc metal in the 

"easy" <111> direction on the {112} or {110} plane generates a stress-free bct structure [19]. 

Because the <111>{112} shear system is not symmetric in the sign of the shear direction, it is 

also possible to move from a bcc structure to a base centered orthorhombic structure by shearing 

in the "hard" direction. Uniaxial tension in the <111> direction takes a bcc structure to a sc 

structure [17,20], while <001> tension moves from bcc to either fcc (the Bain transformation [7]) 

or the same stress-free bct structure encountered in shear [19]. The competition between the two 

possible paths that can be reached by <001> tension has the result that, while most bcc crystals 

(Mo, W) are governed by the instability associated with the fcc structure, some (Nb) become 

unstable with respect to evolution toward the bct saddle point [19]. 

 

The ideal strength of Fe is both scientifically interesting and computationally challenging. A 

good part of the scientific interest and the computational challenge are due to its complex 

magnetic behavior. Scientifically, the magnetism of Fe has the consequence that fcc Fe is 

metastable, while it is an unstable phase in the other common bcc transition metals [18]. Fcc Fe 

is stabilized by a magnetic transition to a complex antiferromagnetic state, which has the 

consequence that the fcc phase is a minimum rather than a saddle point on the strain-energy 

surface of Fe. Because the ideal strength is ordinarily determined by the nature and location of 

the saddle point structures, one might expect that Fe would behave very differently than other 

bcc metals. As we shall see, however, it does not, and the reasons why it does not are 

scientifically interesting. 

 

Computationally, the non-local magnetic interactions in Fe have the consequence that ab-initio 

computational methods that employ the local density approximation cannot be used. In fact, the 

local density approximation predicts that the ground state of Fe should be a non-magnetic close 

packed structure rather than a bcc ferromagnet. The use of the generalized gradient 



approximation has been shown to correct this problem [21]. However these results suggest that 

the energy differences between various phases are due to subtle differences in their charge 

density and charge density gradients. Full-potential Linearized Augmented Plane Wave 

(FLAPW) calculations which make no further approximations beyond the GGA (assuming 

convergence of the basis set, charge density representation and BZ integration) are probably the 

most reliable. Unfortunately, in order to efficiently relax the stresses orthogonal to the applied 

stress, the stresses on the unit cell must be directly computable, and there are no implementations 

of the FLAPW method known to us which can compute stresses. For the current work we have 

chosen to use the Projector Augmented Wave (PAW) Method, originally developed by Blöchl 

[22]. As we shall show below, this method offers both convenience and acceptable accuracy. 

 

II. COMPUTATIONAL METHODS 

 

We computed the total energy and the Hellman-Feynman stresses within the framework of 

density functional theory using the Projector Augmented Wave (PAW) Method [22]. We 

specifically used the PAW Method implementation within the Vienna Ab-initio Simulation 

Package (VASP) [23-25]. To implement this method we took the local density part of the 

exchange correlation energy from the Perdew and Zunger [26] parameterization of the Ceperly 

and Alder [27] exchange correlation functional, and adopted the Vosko-Wilk-Nusair (VWN) 

[28] spin interpolation of the local correlation energy. We used the gradient corrections of 

Perdew and Wang (PW92) [29-30] with the exception that the correlation part of the GGA was 

interpolated from the non-magnetic to the magnetic regime using the standard interpolation 

instead of the VWN interpolation formula. We used a scalar relativistic treatment for the 3d and 

4s valence states, while treating the lower energy levels with the frozen core approximation. The 

plane-wave expansion had an energy cut-off of 25 Ry. We employed the modified tetrahedral 

method of Blöchl [31] for integration in the Brillouin zone, with the number of k-points 

dependent on the structure and number of atoms per unit cell in order to converge the energy to 

within 0.1 mRy and the Hellman-Feynman stresses to within 0.1 GPa. In general a 17x17x17 

Monkhorst Pack Grid was sufficient; however, some calculations were done with a more dense 

mesh of k-points. The stresses for several structures were also compared to calculations which 

used the integration scheme of Methfessel-Paxton [32] and were found to agree within 2%. 



 

The ideal strength was computed for uniaxial stress in tension or shear. The lattice vectors were 

incrementally deformed in the direction of the imposed stress, and at each step the structure was 

relaxed until the stresses orthogonal to the applied stress vanished, as indicated by those 

components of the Hellman-Feynman stresses being less than 0.15 GPa [8]. Because there is no 

unique measure of strain for a given finite deformation, we describe our deformations in terms of 

the engineering strain from the equilibrium structure. The initial set of lattice vectors 

 in an orthogonal coordinate system become the vectors after homogeneous 

deformation by the transformation r . From this transformation, we define the 

strain to be 
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e . As is customary, we redefine the shear strains to be  for 

. While the engineering strain is convenient for describing the change in the lattice vectors 

from their original configuration, the Cauchy (true) stress cannot be calculated from the 

derivative of the free energy with respect to this strain measure. To compute the Cauchy stress 

we take the derivative of the free energy with respect to the incremental strain from a nearby 

reference state, yielding a stress that converges to the thermodynamic definition of the Cauchy 

stress in the limit of small incremental strain. 

ijij e2=γ

 

It should be noted that the ideal strengths determined from these calculations are for quasi-static 

deformation at 0K, and that other dynamic instabilities such as soft phonons may lower the ideal 

strength. 

 

III. RESULTS 

 

A. Equilibrium structures 

 

We chose to compute the ideal strength with the Projector Augmented Wave (PAW) method 

because of its computational efficiency and its ability to treat lattice stress. To check the 

accuracy of the method, we computed the energy as a function of volume for several magnetic 

structures that had previously been calculated with the FLAPW method (see [18] for 

computational details). The magnetic structures included the following: bcc ferromagnet (FM), 



fcc ferromagnet (FM), fcc anti-ferromagnet (AFM), fcc non-magnetic (NM). The results are 

compared in Table 1. 

 

In general the agreement between the two methods is good. In comparing the PAW and FLAPW 

methods we find that the equilibrium volumes of the various phases agree to within 1%. The 

elastic constants of the bcc FM phase agree to within 3% with the exception of c44 which has an 

discrepancy of 13%. The agreement in the energy differences between the various magnetic 

phases is not quite as good with errors ranging from 3-16%; however, these differences are 

probably of the same magnitude as the errors the generalized gradient approximation introduces 

as compared to the true density functional groundstate. In comparing the PAW potential used in 

this study with independent FLAPW calculations, Kresse and Joubert (1999) found that there 

was a 12% discrepancy in the energy difference between the fcc NM and bcc FM phases (using 

GGA), of the same order as the error reported here. We also note that the calculations used 

slightly different representations of the exchange correlation energy; the FLAPW calculations 

used the correlation energy and gradient expansions given in [29, 33]. However, both 

representations are roughly based on PW92. 

 

Compared with experimental measurements of the bcc phase at 4K, the PAW calculations 

predict a lattice parameter that is too small by 1% [34] and elastic constants which are generally 

about 10% too large [35] suggesting a slight over-binding (the only discrepancy being c44 which 

is 18% too small). From the computed elastic constants, the relaxed tensile modulus in the <001> 

direction, , is found to be about 29% too large, while the relaxed shear modulus in 

the <111> direction, , is about 18% too large. As a 

further check on the accuracy of the PAW method, some of the ideal strength calculations have 

been verified by comparing the energies computed with the FLAPW and PAW methods for 

structures which were relaxed using the PAW method. These results are described below where 

applicable. 

11001 /1 sE =><
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B. The ideal strength in tension 

 

First consider the ideal strength in tension. Since previous calculations and symmetry arguments 



suggest <001> is the weakest direction in tension for bcc metals [7], we have focused on the 

ideal strength in this direction. Figure 1 shows the energy and stress as a function of strain for 

FM Fe.  

 

1. Tetragonal vs. orthorhombic instability 

 

There are two possible deformation paths for uniaxial tension in the <001> direction. An 

infinitesimal strain in the <001> direction distorts the crystal into a body-centered tetragonal 

(bct) configuration. If we require that the structure maintain tetragonal symmetry, we find that at 

28.6% strain the energy reaches a local maxima at the fcc structure (c/a ratio = 2 ), and then at 

42% strain it reaches a local minima corresponding to a special stress free bct structure with a c/a 

ratio of 1.66 (see Fig. 2). The plot of stress versus strain associated with this path has a 

maximum tensile stress of 12.6GPa at 15% strain. The maximum locates the elastic instability 

associated with the bcc-fcc (Bain) deformation path and corresponds, physically, to cleavage on 

the {001} plane. 

 

The initial bct structure can also be treated as a special case of a face centered orthorhombic 

(fco) structure that is rotated by 45 degrees (see Fig. 2) and has a:b:c ratio of 2 : 2 :1, where 

we take the c-axis to lie in the direction of the applied strain. If we preserve orthorhombic 

symmetry (which allows the tetragonal symmetry to be broken) the deformation is coincident 

with the Bain path up to a strain of ~18%, but then diverges from it. The evolution of the ratios 

of the orthorhombic lattice parameters along the loading path is shown at the bottom of Fig. 1 

and the geometric relationship between the special crystal structures is shown in Fig. 2. At a 

strain of 18% the crystal becomes unstable with respect to an orthorhombic distortion. The 

energy reaches a maxima at 21% strain, then falls off into a local minimum at a strain of 42%. 

The energy maximum along the orthorhombic path occurs at the "special" bct structure with a c/a 

ratio of 1.66, and the energy minimum is a bcc structure that is rotated relative to the initial bcc 

structure (Fig. 2). If one refers the structure back to the bct structure with the deformation in the 

[001] direction, the orthorhombic instability corresponds to the elastic constant c66 vanishing 

leading the crystal to become unstable with respect to a shear, τxy. Although the crystal is pulled 

in tension this instability would correspond to a shear failure on the {211}<111> system of the 



bcc crystal. 

 

The competition between tetragonal and orthorhombic instabilities in bcc crystals was first noted 

by Luo, et al. [19], who found that the tetragonal instability dominates in Mo (as in W) while the 

orthorhombic instability intrudes in Nb. The issue is physically important, since the tetragonal 

instability leads to failure in tension ({001} cleavage) while the orthorhombic instability leads to 

failure in shear (<111>{112} slip). Fe behaves like the conventional bcc metals, W and Mo. Its 

ideal strength in <001> tension is determined by the tetragonal instability and, hence, by 

cleavage on {001}. In keeping with this result, Fe cleaves on {001} when tested at low 

temperature. 

 

The present authors had previously explored the ideal tensile strength of Fe using the FLAPW 

method, but only considered tetragonal structures. In that work, a slightly higher ideal strength of 

14.2GPa was found, which is consistent with the larger energy difference between the bcc FM 

and fcc FM structures found with the FLAPW method as compared to the PAW method (see 

Table 1). The energy difference may be due to the differences in the treatment of the GGA or 

errors introduced by the PAW potential. In the course of that earlier work, the conditions of 

stability [15] were tested at 14% strain to check for orthogonal instabilities. No orthogonal 

instabilities were found at that strain, consistent with the present research. However, the elastic 

constant c66 was found to be only ~30GPa, quite a bit smaller than in bcc Fe, which was an 

indication of the close proximity of the orthorhombic instability. 

 

Following Orowon [3], we can model the ideal strength by assuming that the stress strain curve 

is sinusoidal with an amplitude of σ  and a period that is twice the strain needed to reach the fcc 

phase (2x0.286): 

m

 







=

286.0
sin π

σσ
e

m .     (1) 

 

Requiring that Hooke's law be satisfied for small strains, one finds that: 
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where is Young's modulus for elongation in the <001> direction. Equation 2 agrees well 

with the results calculated here: σ (when the experimental value for is 

used). 
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2. Magnetic instabilities 

 

The results to this point have only considered ferromagnetic (FM) states; however, the fact that 

Fe has a metastable, antiferromagnetic fcc phase at low temperature suggests that it must become 

unstable with respect to magnetic transitions at large strains. We will now consider this 

possibility. 

 

For computational simplicity we approximate the magnetic structures of fcc Fe as collinear 

structures, even though it is fairly well accepted that the ground-state magnetic structures may be 

complex (such as spin spirals) [36]. It is enormously difficult to treat non-collinear structures. In 

addition to the problems associated with computing the ground state magnetic structure, one 

must also ensure that it has the correct stress state. In the computational approach used here we 

fix the magnetic structure and relax the lattice into the required stress state. We then repeat this 

process for various magnetic structures. We then increment the strain to obtain the energy and 

stress as a function of the strain. Increasing the degrees of freedom in the magnetic structure 

significantly increases the number of magnetic structures that must be tested and structurally 

relaxed. The inclusion of non-collinear structures dramatically increases the number of magnetic 

degrees of freedom, and is simply impractical with available computational resources. In 

addition to assuming collinear structures, we used a scalar relativistic approximation that does 

not include effects of spin-orbit coupling. However, our earlier calculations using the FLAPW 

method showed that this makes a negligible effect on the energy differences between various 

magnetic structures [18]. 

 

There is good reason to believe that the collinear approximation, while not exact, may give a 



reasonable representation of the behavior of fcc Fe. There is probative experimental data on the 

magnetic state of nearly pure Fe in the fcc phase. While bulk fcc Fe is difficult to achieve 

experimentally at low temperature, it can be stabilized in thin epitaxial films or in small 

precipitates in a copper matrix. Tsunoda [37, 38] found that small fcc precipitates in Cu that are 

almost pure Fe have a spiral spin density wave ground state. Numerous researchers have studied 

the magnetic structure of fcc Fe, and Knöpfle et al. [36] have recently published calculations 

using the modified augmented spherical wave method which show good agreement with 

experiment. Their minimum energy fcc structure has a spiral vector of q=(0.15,0,1) with an 

energy which lies <1mRy below the AFM phase and has a slightly larger equilibrium volume 

than the AFM phase. Herper, Hoffmann, and Entel [39] proposed using a collinear double period 

anti-ferromagnetic structure (DAFM) as an approximate to the non-collinear ground state. In this 

structure the spins on (200) planes are oriented up-up-down-down. Their FLAPW results show 

that the DAFM structure has a similar equilibrium volume and lies <1mRy below the AFM 

phase. This suggests that the DAFM structure may be a good approximate to the non-collinear 

fcc structure. 

 

In Fig. 3 we present the energy as a function of strain for Fe in the FM, AFM, DAFM and low-

spin FM structures. We have studied both bct and fco structures and found that the AFM and LS-

FM structures remain tetragonal while the DAFM and FM structures undergo a transformation to 

the fco structure at different points along the loading path. We also see that FM Fe becomes 

magnetically unstable at about ~20% strain at which point the DAFM structure is preferred. This 

result suggests that the ideal strength is not compromised by magnetic instability since the 

structural instability ({001} cleavage) is encountered before the magnetic instability is reached. 

This result is in agreement with the earlier FLAPW calculations which only explored the DAFM 

structure near the fcc structure and near the elastic instability in the FM phase [18]. Thus, the 

ideal strength in <001> tension is ~12.6 GPa and is set by a tensile elastic instability along the 

Bain path from bcc to fcc. The stability of fcc iron is made possible by a magnetic phase 

transition at larger strains which does not affect the ideal strength. 

 

Several previous authors have studied the energy as function of tetragonality for Fe, but have not 

determined the ideal strength [39, 40]. Friák et al. [41] have calculated the ideal tensile strength 



along the tetragonal loading path using the FLAPW method and found a strength of 12.7 GPa in 

good agreement with our results from the PAW method and slightly lower than our previous 

calculations using the FLAPW method. While the use of different GGA formulations in the three 

cases makes exact comparison difficult, the differences are within the error range for density 

functional methods. To our knowledge, the only attempt to measure the ideal tensile strength of 

Fe was by Brenner [42] who tested Fe whiskers in tension. He measured a value of ~5GPa for 

tension in the <001> direction [42]. While this value is considerably lower than the calculated 

ideal strength, the failure initiated at the surface and, therefore, does not represent bulk strength. 

The measured value of the strength in the <111> direction was 13GPa, but it is expected that the 

ideal strength of bcc metals in the <111> direction is significantly larger than in the <001> 

direction [17, 7]. 

 

C. The ideal strength in shear 

 

1. Shear strength of FM bcc Fe 

 

We computed the ideal shear strength of Fe for two common slip systems: <111>{112} and 

<111>{110}. The energy and the stress are plotted as functions of the shear strain for the two 

systems in Fig. 2. We note that the ideal strength in the easy direction is very similar for both slip 

systems, 7.2 GPa for <111>{112} and 7.8 GPa for <111>{110}. The energy curves for the two 

systems also have the same maxima. These results are common in bcc crystals [9, 19] and have 

their origin in the symmetry of the "saddle point" structures that govern the shear strength. 

Analysis of the saddle point structures for the two slip systems reveals that they are identical. 

Moreover, the saddle point structure in shear is precisely the bct saddle point structure that 

governs the orthorhombic instability in tension. The convergence of the three strain paths to the 

same saddle point simply shows that the nearby saddle points on the energy hypersurface act as 

"attractors" to which the various deformations are drawn. 

 

While the saddle point structure for the two slip systems is the same, the strain paths on the 

energy hypersurface are slightly different. This difference is responsible for the fact that the 

strain at which the bct structure occurs is slightly larger for the <111>{110} system, and the 



ideal strengths for the two systems differ by ~8%. The relaxation of the crystal lattice during 

strain is also distinctly different. A constant volume shear on the <111>{112} system (with no 

relaxation in the slip plane) produces a body-centered orthorhombic structure at a engineering 

shear strain of 33%. Allowing relaxation, the special bct structure is reached after a strain of 29% 

with a 4% expansion perpendicular to the slip plane, and relaxation strains in the slip plane of < 

2% (see Fig. 5 and Table 2). On the other hand, a <111>{110} shear reaches the bct structure at 

34% strain, but requires a significant relaxation in the slip plane, the largest component being a 

15% shear. The reason for the differences between {112} and {110} shear lies in the fact that 

while both paths begin at bcc and end at the bct saddle-point structure, the very different applied 

stresses cause them to diverge from one another at intermediate strains and produce significantly 

different atomic configurations near the point of instability. 

 

As suggested by Frenkel [2], we model the ideal strength by assuming the that the stress-strain 

relation is sinusoidal with an amplitude τ and period 2 : m Bγ
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If we require that Hooke's law be satisfied for small strains, this implies that 
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where G is the shear modulus in the <111> direction. (Note that the shear moduli are the 

same for both shear systems.) If we take γ  to be 0.34, then equation 4  implies that 

. Our results give dimensionless strengths which are very close to this, for 

{112} τ and for {110} τ , where we have used the experimental 

value of G from Table 1. 
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The shear strength in the hard direction for the <111>{112} system is 15.0 GPa. It follows a path 



toward a different saddle point that is much higher in energy (see Fig. 4 and 5). The saddle point 

structure is base centered orthorhombic with an a:b:c ratio of 1:1.06:1.77. This structure can also 

be pictured as a simple tetragonal structure with a c/a ratio of 2.42 which has undergone an 

(engineering) shear strain of 6% in the plane perpendicular to the unique axis. Figure 5 

demonstrates the geometry and the fact that the strain needed to reach this saddle point is 

approximately twice that for shear in the easy direction. 

 

To test the numerical accuracy of the PAW method, the energies of several structures along the 

<111>{112} "easy" shear path were also computed with the FLAPW technique. The energy 

differences were less than 0.2mRy. While we have not confirmed that the stress states of these 

structures are pure shear when computed with the FLAPW method, the close agreement in the 

energies along the deformation path suggests that the PAW method is quite accurate in this 

regime. 

 

2. Magnetic instabilities in shear  

 

We also investigated the possibility that finite shear strain would induce magnetic instabilities 

that would limit the shear strength. This was done by testing several different magnetic structures 

and relaxing the stresses, as in the ferromagnetic case. The energy was only computed at a few 

interesting points along the <111>{112} loading path. The magnetic structures were chosen to 

mimic the DAFM structure used for the tensile strength calculations, but because the crystal is 

monoclinic along the loading path, there are several inequivalent ways of arranging the up and 

down spins in such a fashion. The 5 structures we studied are shown in Fig. 6. They include 

superlattices made up of one or two base centered monoclinic cells, with different arrangements 

of the up and down spins occupying the sites. 

 

Figure 7 shows the energy as a function of strain for the relaxed structures. There is a magnetic 

transformation at ~20% strain to the magnetic structure denoted DAFMX. However, this strain is 

beyond the point of elastic instability, so this transformation does not affect the ideal shear 

strength. The energy as a function of strain for the DAFMX structure was confirmed by FLAPW 

calculations using a method similar to that described above. We again note that we have only 



considered here a set of collinear structures which we hope approximate the ground state 

magnetic structure; however, the introduction of non-collinear magnetic ordering may further 

reduce the energy of some of these structures. 

 

IV. CONCLUSIONS 

 

Ab-initio total energy calculations using the PAW method were used to calculate the ideal 

strength of iron in tension and shear. It is, to our knowledge, the first computation of the ideal 

shear strength for any ferromagnetic material. The ideal tensile strength in the <001> direction is 

12.6 GPa and is associated with an elastic instability at 15% strain along the Bain path from bcc 

to fcc. At this strain the structure is stable with respect to both orthogonal elastic instabilities and 

magnetic instabilities. However, if it were possible to reach larger strains, both an elastic 

instability toward a face centered orthorhombic structure would occur and a magnetic instability 

from the bct FM to a DAFM magnetic structure would be encountered. The ideal shear strengths 

of the two shear systems, <111>{112} and <111>{110}, are 7.2GPa and 7.8 GPa respectively. 

The ideal shear strengths are very similar because they are determined by the same body 

centered tetragonal "saddle point structure". (This bct "saddle-point structure" is also responsible 

for the orthorhombic instability in tension). Along the <111>{112} shear path, a magnetic 

instability toward a complex magnetic structure is found at ~20% strain. Like the magnetic 

instabilities in tension, it does not compromise the ideal strength because it occurs at larger 

strains than the elastic instability in the ferromagnetic phase. Despite its complex magnetic 

behavior and its metastable fcc phase, the ideal strength of Fe is governed by the same elastic 

instabilities that are found in other bcc metals. 
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 PAW FLAPW PAW-FLAPW 

%Error 

Experiment 

(4K) 

PAW-Experiment 

%Error 

bcc-FM      

Vo (au3) 76.47 76.20 0.4% 78.94 -3.1% 

ao (Å) 2.830 2.827 0.1% 2.86 -1.1% 

B (GPa) 194 196 -1.0% 174 11.5% 

c11 (GPa) 286 289 -0.9% 245 16.9% 

c12 (GPa) 147 152 -3.43% 139 5.9% 

c44 (GPa) 99 114 -12.8% 122 -18.5% 

E<100> (GPa) 187 184 1.5 144 29.2% 

G<111> (GPa) 77 78.9 -1.9% 65 18.4% 

fcc-AFM      

Vo (au3) 71.19 71.50 -0.4%   

B (GPa) 202 209 -3.6%   

Ec (mRy) 8.2 7.1 15.7%   

fcc-FM      

Vo (au3) 80.81 80.70 0.1%   

B (GPa) 160 169 -5.3%   

Ec (mRy) 11.5 12.0 -4.2%   

fcc-LSFM      

Vo (au3) 70.10 70.88 -1.1%   

B (GPa) 171 207 -17.1%   

Ec (mRy) 10.2 9.0 13.7%   

fcc-NM      

Vo (au3) 69.06 69.09 -0.04%   

B (GPa) 284 286 -0.8%   

Ec (mRy) 10.4 10.1 3.2%   

Table 1. Lattice parameters, volumes, relative energies and elastic constants from PAW, FLAPW 

and experiment.  All energies are relative to bcc-FM which is taken as 0. Experimental elastic 



constants at 4K are from [35] and the experimental lattice parameter extrapolated to 4K is from 

[34]. 



 

 Tension Shear 

 <001> <001> <111>{112} <112>{112} <111>{110} 

 tetragonal othorhombic (hard) (easy)  

σm,τm (GPa) 12.6 12.6 15.0 7.2 7.8 

Instability bct bct monoclinic monoclinic triclinic 

exx -.042 -.049 .037 -.008 -.002 

eyy -.042 -.049 -0.26 -.006 -.001 

ezz .150 .176 .042 .028 .029 

γyz   -.374 .140 .059 

γxz     .020 

γxy     .035 

Saddle Point fcc bct orthorhombic bct bct 

exx -.091 -.070 .046 .004 -.014 

eyy -.091 -.070 -.031 -.016 -.015 

ezz .286 .209 .088 .044 .033 

γyz   -.726 .288 .339 

γxz     .022 

γxy     .154 

 

Table 2. Summary of stresses and strains associated with instabilities and saddle points. For 

tension, the strains are refered to a bct cell with the unique [001] axis along the z-axis. For 

<111>{112} shear, the reference structure is a base centered monoclinic cell with its 2-fold axis 

parallel to the x-axis, one orthogonal lattice vector parallel to the the shear direction which 

coincides with the y-axis, and the other orthogonal lattice vector in the y-z plane. For 

<111>{110} shear, the reference structure is a triclinic cell with one lattice vector in the shear 

direction which coincides with the y-axis, the second lattice vector in the shear plane which 

coincides with the x-y plane, and third vector with some component in the z-direction. 



 
Figure 1. (a) Energy and (b) stress as a function of applied tensile strain along <001>: (filled 
square ■) Bain Path with tetragonal symmetry, (open square □) orthorhombic path. (c) Ratios of 
the lattice parameters along the orthorhombic path: (filled diamond ) a/b, (filled triangle ▲) 
a/c, (filled circle ) b/c. Numbers and open circles in (a) and (c) indicate special structures with 
high symmetry that are shown schematically in Fig. 2. 
 



 
Figure 2. The geometry of the Bain path and the orthorhombic instability. The crystal starts as a 
bcc structure (1) which can also be visualized as a fco structure with a:b:c ratio of 2 : 2 :1.  If 
tetragonal symmetry is maintained the Bain path is followed to the fcc structure (4) which is 
equivalent to a bct structure with a c/a ratio of 2 . If the tetragonal symmetry is broken the 
orthorhombic path is followed and a maximum energy is reached at a special bct structure (2) 
which has a c/a ratio of 1.66. From that energy maxima, the orthorhombic path leads down in 
energy to a bcc structure (3) which is rotated relative to the starting bcc structure. 
 

 
Figure 3. Energy vs. strain in the <001> direction for various magnetic structures: (filled square 
■) bct-FM, (open square □) fco-FM, (filled triangle ▲) bct-DAFM, (open triangle ) fco-
DAFM, (filled circle ) bct-AFM, (filled diamond ) bct-LSFM. The fco-AFM and fco-LSFM 
structures follow paths identical to bct-AFM and bct-LSFM respectively and are not shown. A 
magnetic phase transformation is seen near 20% strain. Lines are guides for the eye. 
 
 



 
Figure 4. (a) Energy versus shear strain and (b) absolute value of the stress versus strain for 
(filled square ■) <111>{112} shear and (open square □) <111>{110} shear. 
 

 
Figure 5. Geometry of the <111>{112} shear system. The base centered monoclinic cell is 
shown inside the initial bcc structure (left). A {110} projection of the structure shows the how 
the monoclinc cell becomes a bct cell upon applying a ~33% shear in the easy direction (top). A 
shear in the opposite (hard) direction generates a base centered orthorhombic structure after a 
shear strain of ~66% (bottom). The monoclinic structure's two fold axis is pointed out of the 
page. Black atoms are those in the closest plane and the gray atoms are in the following plane of 
atoms. 



 

 
Figure 6. The magnetic structures used to describe complex magnetic ordering in <111>{112} 
shear. The structures are supercells made up of 1 or 2 body centered monoclinic cells whose 2-
fold axes are oriented out of the page. The bct-DAFM structure is shown for reference. 
 

 
Figure 7. Energy as a function of shear strain for several magnetic structures. (solid square ■) 
FM, (open square □) DAFMX, (open circle ) DAFMZ, (open triangle ) DAFMY, (open 
diamond ◊) DAFMY2, (X) AFM. The various magnetic structures are shown in Fig. 6. 
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